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How to automate decision making?
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Decision trees

Logistic regression

Neural networks

Probabilistic graphical models

Random forests

Naïve Bayes
Support vector machines

Nearest neighbours



But what about this?
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Long sequences 
of actions

Causal 
dependencies

Very sparse 
feedback



Reinforcement learning

Reinforcement learning is the branch of machine learning relating to 
learning in sequential decision making settings

Behaviourlearning:
ÅMultiple decisions
ÅLong-term effects

(Stochastic optimal control theory
with unknown models)
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Interacting with an environment

Decision maker (agent) exists within an environment
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Interacting with an environment

Decision maker (agent) exists within an environment

Agent takes actions based on the
environment state
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Interacting with an environment

Decision maker (agent) exists within an environment

Agent takes actions based on the
environment state

Environment state updates

Agent receives feedback as rewards
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A model for decision making

Markov Decision Process (MDP)

M = ἂS, A, T, Rἃ
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A model for decision making

Markov Decision Process (MDP)

M = ἂS, A, T, Rἃ

Å States: encode world configurations

Å Actions: choices made by agent
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A model for decision making

Markov Decision Process (MDP)

M = ἂS, A, T, Rἃ

ÅTransition function: how the world
evolves under actions

Stochastic!
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A model for decision making

Markov Decision Process (MDP)

M = ἂS, A, T, Rἃ

ÅRewards: feedback signal to agent
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Policies

A policy (or behaviouror strategy) “is any mapping from states to 
actions to take
ÅDeterministic or stochastic

Optimal policy “z

Å Accumulates maximal rewards over a trajectory

Å This is what we want to learn!
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An example

Cleaning Robot 

Actions:

Reward:
Å +1 for finding dirt
Å -1 for falling into hole
Å -0.001 for every move
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Episodic task: agent has repeated episodes of interaction (e.g. attempt at cleaning the room)
Goal: maximise total reward



What is the optimal policy?

0.10.1

0.8
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Evaluating behaviours

Many different trajectories
are possible through a space

Which is best?

Use the total discounted

accumulated rewards

to evaluate them 

42

-18

37.6
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Rewards

Scalar feedback signal 
Encode (un)desirable features of behaviours:

Winning/losing, collisions, taking expensive actions, ...

Typically:

Å Sparse

Å Delayed

Å Only have relative value
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The Rats of Hanoi
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Immediate vs delayed rewards

Cannot just rely on the instantaneousreward function
¢ǊŀŘŜƻŦŦΥ ŘƻƴΩǘ Ƨǳǎǘ ŀŎǘ ƳȅƻǇƛŎŀƭƭȅ όǎƘƻǊǘ ǘŜǊƳύ

Notion of value to codify the goodness of a state, considering a policy 
running into the future

Å Represented as a value function

1 step 5 steps
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Value functions

Value function ὠ ί:

The expected return (R) starting
at state ίand then executing
policy “

άHow good is ίunder “Κέ

accumulated reward
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Example value functions

Reward -1 for 
every move
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Example value functions

Optimal policy:

Benjamin Rosman



Data generation

Ὕand Ὑunknown!

Instead, generate samples of
training data ίȟὥȟὶȟί from
environment

0

-5
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Learning from experience

We need
Å A method to choose actions

Å Some model to keep track of
and learn

Å Value function
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The Bandit Problem

Consider a row of one-arm bandit
machines in a casino

{Ŝǘ ƻŦ άŀǊƳǎέ όŀŎǘƛƻƴǎύ ǘƘŀǘ 
each generate rewards from 
different distributions

Exploration vs exploitation
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Action selection

The exploration-exploitation tradeoff!

Maximizing expected returns means balancing between: 

Å Exploitinggained knowledge (greedy)
Å Take the best known action

Å Exploring new actions/states (random)
Å Try something new 
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Action selection strategies

‭-Greedy (π ‭ ρ):

Å With probabilityρ ‭exploit:

Å Choose the bestaction for a state

Å With probability ‭explore:

Å Randomlychoose action

‭usually higher at beginning of learning, decay later
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Learning from experience

We need
Å A method to choose actions

Å Some model to keep track of
and learn

Å Value function
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Temporal Difference Learning

Å Repeat (while learning):

Å Pick a start state ί

Å Repeat (until win/lose):

Å Choose an action ὥfrom “(derived from ὠ) in ί

Å Take action ὥ, observe ὶ, ίᴂ

Å Update ὠίbased on ὶand ὠί

Å Update state toίᴂ
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Note how we update/learn as we are acting
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What does learning look like?
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But the world is continuous!
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Function approximation

LƴǎǘŜŀŘ ƻŦ ƭŜŀǊƴƛƴƎ ǘƘŜ ōŜǎǘ ŀŎǘƛƻƴ ŦƻǊ ŜǾŜǊȅ ǎǘŀǘŜΧ

Use a neural network to learn a representation of the value function
Å i.e. a mapping from states to value/actions

Import the whole deep learning toolbox into RL
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Backgammon

TD-Gammon: Tesauro(1992-1995)
ÅAt or near best human level

ÅLearn to play Backgammon through self-play

Å1.5 million games

ÅNeural network function approximator

Changed the way the best human players played
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States = board configurations (ρπ)
Actions = moves

Rewards = 
ρύὭὲ
ρὰέίὩ
πὩὰίὩ


