
Learning to Make Decisions in
an Uncertain World

Benjamin Rosman

Mobile Intelligent Autonomous Systems

Council for Scientific and Industrial Research

and

School of Computer Science and Applied Mathematics

University of the Witwatersrand

South Africa

Benjamin Rosman

How to automate decision making?

Benjamin Rosman

Decision trees

Logistic regression

Neural networks

Probabilistic graphical models

Random forests

Naïve Bayes
Support vector machines

Nearest neighbours

But what about this?

Benjamin Rosman

Long sequences
of actions

Causal
dependencies

Very sparse
feedback

Reinforcement learning

Reinforcement learning is the branch of machine learning relating to
learning in sequential decision making settings

Behaviourlearning:
ÅMultiple decisions
ÅLong-term effects

(Stochastic optimal control theory
with unknown models)

Benjamin Rosman

Interacting with an environment

Decision maker (agent) exists within an environment

Benjamin Rosman

Interacting with an environment

Decision maker (agent) exists within an environment

Agent takes actions based on the
environment state

Benjamin Rosman

Interacting with an environment

Decision maker (agent) exists within an environment

Agent takes actions based on the
environment state

Environment state updates

Agent receives feedback as rewards

Benjamin Rosman

A model for decision making

Markov Decision Process (MDP)

M = ἂS, A, T, Rἃ

Benjamin Rosman

A model for decision making

Markov Decision Process (MDP)

M = ἂS, A, T, Rἃ

Å States: encode world configurations

Å Actions: choices made by agent

Benjamin Rosman

A model for decision making

Markov Decision Process (MDP)

M = ἂS, A, T, Rἃ

ÅTransition function: how the world
evolves under actions

Stochastic!

Benjamin Rosman

A model for decision making

Markov Decision Process (MDP)

M = ἂS, A, T, Rἃ

ÅRewards: feedback signal to agent

Benjamin Rosman

Policies

A policy (or behaviouror strategy) “is any mapping from states to
actions to take
ÅDeterministic or stochastic

Optimal policy “z

Å Accumulates maximal rewards over a trajectory

Å This is what we want to learn!

Benjamin Rosman

An example

Cleaning Robot

Actions:

Reward:
Å +1 for finding dirt
Å -1 for falling into hole
Å -0.001 for every move

Benjamin Rosman

Episodic task: agent has repeated episodes of interaction (e.g. attempt at cleaning the room)
Goal: maximise total reward

What is the optimal policy?

0.10.1

0.8

Benjamin Rosman

Evaluating behaviours

Many different trajectories
are possible through a space

Which is best?

Use the total discounted

accumulated rewards

to evaluate them

42

-18

37.6

Benjamin Rosman

Rewards

Scalar feedback signal
Encode (un)desirable features of behaviours:

Winning/losing, collisions, taking expensive actions, ...

Typically:

Å Sparse

Å Delayed

Å Only have relative value

Benjamin Rosman

The Rats of Hanoi

Benjamin Rosman

Immediate vs delayed rewards

Cannot just rely on the instantaneousreward function
¢ǊŀŘŜƻŦŦΥ ŘƻƴΩǘ Ƨǳǎǘ ŀŎǘ ƳȅƻǇƛŎŀƭƭȅ όǎƘƻǊǘ ǘŜǊƳύ

Notion of value to codify the goodness of a state, considering a policy
running into the future

Å Represented as a value function

1 step 5 steps

Benjamin Rosman

Value functions

Value function ὠ ί:

The expected return (R) starting
at state ίand then executing
policy “

άHow good is ίunder “Κέ

accumulated reward

Benjamin Rosman

10099

98 97

96

Example value functions

Reward -1 for
every move

Benjamin Rosman

Example value functions

Optimal policy:

Benjamin Rosman

Data generation

Ὕand Ὑunknown!

Instead, generate samples of
training data ίȟὥȟὶȟί from
environment

0

-5

Benjamin Rosman

Learning from experience

We need
Å A method to choose actions

Å Some model to keep track of
and learn

Å Value function

Benjamin Rosman

The Bandit Problem

Consider a row of one-arm bandit
machines in a casino

{Ŝǘ ƻŦ άŀǊƳǎέ όŀŎǘƛƻƴǎύ ǘƘŀǘ
each generate rewards from
different distributions

Exploration vs exploitation

Benjamin Rosman

Action selection

The exploration-exploitation tradeoff!

Maximizing expected returns means balancing between:

Å Exploitinggained knowledge (greedy)
Å Take the best known action

Å Exploring new actions/states (random)
Å Try something new

Benjamin Rosman

Action selection strategies

-Greedy (π ρ):

Å With probabilityρ exploit:

Å Choose the bestaction for a state

Å With probability explore:

Å Randomlychoose action

usually higher at beginning of learning, decay later

Benjamin Rosman

Learning from experience

We need
Å A method to choose actions

Å Some model to keep track of
and learn

Å Value function

Benjamin Rosman

Temporal Difference Learning

Å Repeat (while learning):

Å Pick a start state ί

Å Repeat (until win/lose):

Å Choose an action ὥfrom “(derived from ὠ) in ί

Å Take action ὥ, observe ὶ, ίᴂ

Å Update ὠίbased on ὶand ὠί

Å Update state toίᴂ

Benjamin Rosman

Note how we update/learn as we are acting

s

ǎΩ

a

a
a

r

V

V

“

What does learning look like?

Benjamin Rosman

episode

re
w

a
rd

But the world is continuous!

Benjamin Rosman

Function approximation

LƴǎǘŜŀŘ ƻŦ ƭŜŀǊƴƛƴƎ ǘƘŜ ōŜǎǘ ŀŎǘƛƻƴ ŦƻǊ ŜǾŜǊȅ ǎǘŀǘŜΧ

Use a neural network to learn a representation of the value function
Å i.e. a mapping from states to value/actions

Import the whole deep learning toolbox into RL

Benjamin Rosman

Backgammon

TD-Gammon: Tesauro(1992-1995)
ÅAt or near best human level

ÅLearn to play Backgammon through self-play

Å1.5 million games

ÅNeural network function approximator

Changed the way the best human players played

Benjamin Rosman

States = board configurations (ρπ)
Actions = moves

Rewards =
ρύὭὲ
ρὰέίὩ
πὩὰίὩ

