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How to automate decision making?

Logistic regression

Decision trees
Neural networks

Nearest neighbours

Probabilistic graphical models

Random forests

Nailve Bayes :
Support vector machines
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But what about this?

Long sequences
of actions

Causal
dependencies

Very sparse
feedback
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Reinforcement learning

Reinforcement learning iIs the branch of machine learning relating to
learning insequential decision making settings

Behaviourdearning:
AMultiple decisions
ALongterm effects

(Stochastic optimal control theory
with unknown models)
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Interacting with an environment

Decision maker (agent) exists within an environmg
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Interacting with an environment

Agent takesactionsbased on the
environmentstate
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Interacting with an environment

Decision maker (agent) exists within an environmeg‘
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Agent takesactionsbased on the
environmentstate

Environmentstate updates

Agent receives feedback emwvards
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A model for decision making

Markov Decision Process (MDP)

M =05 A, T, Ra



A model for decision making

Markov Decision Process (MDP)
M =05 A, T, Ra
A Sates: encode world configurations

A Actions: choices made by agent ’



A model for decision making

Markov Decision Process (MDP)
M =05, A, T, Ra

ATransition function: how the world
evolves under actions

Stochastic!

Benjamin Rosman



A model for decision making

Markov Decision Process (MDP)
M =05, A, T, Ra

ARewards: feedback signal to agent
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Policies

A policy (or behaviouror strategy)* is any mapping from states to
actions to take
A Deterministic or stochastic

Optimal policy*
A Accumulates maximal rewards over a trajectory
A This is what we want to learn!
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An example

Cleaning Robot

Actions: $

Reward:

A +1 for finding dirt

A -1 for falling into hole
A -0.001 for every move

1 2 3 4

Episodic taskagent has repeated episodes of interaction (e.g. attempt at cleaning the room)
Goal maximise total reward
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What Is the optimal policy?




Evaluatindbehaviours

Many different trajectories
are possible through a space

Which iIs best?

Use the totadiscounted
accumulated rewards
to evaluate them
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Rewards

Scalar feedback signal

Encode (un)desirable featureslméhaviours
Winning/losing, collisions, taking expensive actions, ...

Typically:
A Sparse

A Delayed
A Only have relative value
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The Rats of Hanol




Immediate vs delayed rewards

Cannot just rely on thenstantaneousreward function 5
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1step 5 steps

Notion ofvalueto codify the goodness of a state, considering a policy
running into the future

A Represented asaalue function



Valuefunctions N
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accumulated reward

Value functionw i : /v

The expected returnR) starting
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Examplesalue functions

Reward-1 for
every move A
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Examplesalue functions

Optimal policy:
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Data generation

“Yand'Y unknown!

Instead, generate samples of
training data il i from
environment




Learning from experience

We need
A A method to choose actions

A Some model to keep track of
and learn
A Valuefunction




The Bandit Problem

Consider a row of onrarm bandit
machines in a casino

{SG 2F dalF Nxyag ot
each generate rewards from
different distributions

Exploration vs exploitation
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Action selection

The exploratiorexploitation tradeoff!
Maximizing expected returns means balancing between:

A Exploitinggained knowledge (greedy)
A Take the best known action

A Exploringnew actions/states (random)
A Try something new



Action selection strategies

i-Greedy(t |7  p):

A With probabilityp | exploit:
A Choose théestaction for a state

A With probability] explore
A Randomlychoose action

7 usually higher at beginning of learning, decay later
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Learning from experience

We need
A A method to choose actions

A Some model to keep track of
and learn
A Valuefunction
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Temporal Differenckearning

A Repeat (while learning):

A Pick a start staté

A Repeat (until win/lose):

A

A
A
A

Choose an actiowfrom“ (derived fromw) ini

Takeaction®, observd ,i @

Updatew(i ) based on andw(i )

Update state td ae

Note how we update/learn as we are acting



What does learning look like?

ward
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But the world 1s continuous!




Functionapproximation
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Use a neural network to learn a representation of the value function
A i.e. a mapping from states to value/actions

&T00 0

Import the whole deep Ieérning toolbox into RL



Backgammon

TDGammon:Tesaura19921995

A At or near best human level
ALearn to play Backgammon through salkiy

A1-5 million games States = board configurations (@ 1)
ANeural network function approximator Actions = moves
pL Q¢
Rewards= pa € i Q
mQai Q

Changedhe way the best human players played



